A Modified Particle Method for Semilinear Hyperbolic Systems with Oscillatory Solutions∗

نویسندگان

  • R. C. FETECAU
  • T. Y. HOU
  • George Papanicolaou
چکیده

We introduce a modified particle method for semi-linear hyperbolic systems with highly oscillatory solutions. The main feature of this modified particle method is that we do not require different families of characteristics to meet at one point. In the modified particle method, we update the ith component of the solution along its own characteristics, and interpolate the other components of the solution from their own characteristic points to the ith characteristic point. We prove the convergence of the modified particle method essentially independent of the small scale for the variable coefficient Carleman model. The same result also applies to the non-resonant Broadwell model. Numerical evidence suggests that the modified particle method also converges essentially independent of the small scale for the original Broadwell model if a cubic spline interpolation is used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

Existence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions

This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.

متن کامل

Asymptotic behaviour of solutions of semilinear hyperbolic systems in arbitrary domains

In this paper the long time asymptotic behavior of solutions of semilinear symmetric hyperbolic system including Maxwell s equations and the scalar wave equation in an ar bitraty domain are investigated The possibly nonlinear damping term may vanish on a certain subset of the domain It is shown that the solution decays weakly to zero if and only if the initial state is orthogonal to all station...

متن کامل

A Quadrature Finite Element Method for Semilinear Second-Order Hyperbolic Problems*

In this workwe propose and analyze a fully discretemodifiedCrank–Nicolson finite element (CNFE)method with quadrature for solving semilinear second-order hyperbolic initial-boundary value problems. We prove optimal-order convergence in both time and space for the quadrature-modified CNFE scheme that does not require nonlinear algebraic solvers. Finally, we demonstrate numerically the order of c...

متن کامل

Institute for Mathematical Physics Semilinear Geometric Optics for Generalized Solutions Semilinear Geometric Optics for Generalized Solutions

This paper is devoted to the study of nonlinear geometric optics in Colombeau algebras of generalized functions in the case of Cauchy problems for semilinear hyperbolic systems in one space variable. Extending classical results, we establish a generalized variant of nonlinear geometric optics. As an application, a nonlinear superposition principle is obtained when distributional initial data ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005